Principles of Communications EES 351

Asst. Prof. Dr. Prapun Suksompong

prapun@siit.tu.ac.th
4.2 Energy and Power

Review: Energy and Power

- Consider a signal $g(t)$.
- Total (normalized) energy:
[Defn. 4.13]

$$
E_{g}=\int_{-\infty}^{\infty}|g(t)|^{2} d t=\lim _{T \rightarrow \infty} \int_{-T}^{T}|g(t)|^{2} d t \geqslant \int_{-\infty}^{\infty}|G(f)|^{2} d f .
$$

- Average (normalized) power:
[Defn. 4.15]

$$
\left.P_{g}=\left.\langle | g(t)\right|^{2}\right\rangle=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2}|g(t)|^{2} d t=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}|g(t)|^{2} d t .
$$

time-average operator
[Defn. 4.16a]

Review: Time average vs. Inner Product

Inner Product:

$$
\langle x(t), y(t)\rangle=\int_{-\infty}^{\infty} x(t) y^{*}(t) d t
$$

Time Average:

$$
\langle g(t)\rangle=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2} g(t) d t=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} g(t) d t
$$

Power Calculation

[4.18]
Periodic with period T_{0}

$$
\begin{aligned}
& \left.P_{g}=\left.\langle | g(t)\right|^{2}\right\rangle \\
& \frac{1}{T_{0}} \int_{T_{0}}|g(t)|^{2} d t
\end{aligned}
$$

$$
\sum_{k} c_{k} e^{j 2 \pi f_{\mathrm{k}} t}
$$

where the f_{k} are distinct
$\sum_{k}\left|c_{k}\right|^{2}$

Power Calculation: Special Cases

Linear combination of complex exponential functions
[4.23]
$\left.g(t) \quad P_{g}=\left.\langle | g(t)\right|^{2}\right\rangle$

$$
\text { where the } f_{k} \text { are distinct }
$$

Linear combination of sinusoids
[4.28]

$$
\sum_{k} A_{k} \cos \left(2 \pi f_{k} t+\phi_{k}\right)
$$ where the f_{k} are positive and distinct

$$
\frac{1}{2} \sum_{k}\left|A_{k}\right|^{2}
$$

Summary (1)

- (Total) Energy: $\boldsymbol{E}_{\boldsymbol{g}}=\int_{-\infty}^{\infty}|g(t)|^{2} d t=\int_{-\infty}^{\infty}|G(f)|^{2} d f$
- Average Power: $\left.\boldsymbol{P}_{g}=\left.\langle | g(t)\right|^{2}\right\rangle=\lim _{T \rightarrow \infty} \frac{1}{\frac{1}{2 T}} \int_{-T}^{T}|g(t)|^{2} d t$
- For periodic signal:

$$
\begin{aligned}
& \text { For periodic signal: } \\
& P_{g}=\frac{1}{T_{0}} \int_{T_{0}}|g(t)|^{2} d t=\frac{\text { energy in one period }}{\text { period }}
\end{aligned}
$$

- Other special cases:

- Time Average: $\langle\boldsymbol{g}(\boldsymbol{t})\rangle=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} g(t) d t$
- For periodic signal:

$$
\langle g(t)\rangle=\frac{1}{T_{0}} \int_{T_{0}} g(t) d t
$$

Summary (2)

- (Total) Energy: $E_{g}=\int_{-\infty}^{\infty}|g(t)|^{2} d t=\int_{-\infty}^{\infty}|G(f)|^{2} d f$
- A signal $g(t)$ is an energy signal if $0<E_{g}<\infty$.
- Any energy signal $g(t)$ has $P_{g}=0$.
- Average Power: $\left.\boldsymbol{P}_{g}=\left.\langle | g(t)\right|^{2}\right\rangle=\left.\lim _{T \rightarrow \infty}\left|\frac{1}{2 T} \int_{-T}^{T}\right| g(t)\right|^{2} d t$,
- A signal $g(t)$ is a power signal if $0<P_{g}<\infty$.
- Any power signal $g(t)$ has $E_{g}=\infty$.
- For periodic signal:
$P_{g}=\frac{1}{T_{0}} \int_{T_{0}}|g(t)|^{2} d t=\frac{\text { energy in one period }}{\text { period }}$
- Other special cases:

Linear combination of
complex exponential
functions [4.23]

Linear combination of sinusoids [4.28]

Summary (3)

- (Total) Energy: $\boldsymbol{E}_{g}=\int_{-\infty}^{\infty}|g(t)|^{2} d t=\int_{-\infty}^{\infty}|G(f)|^{2} d f$
- A signal $g(t)$ is an energy signal if $0<E_{g}<\infty$.
- Any energy signal $g(t)$ has $P_{g}=0$.
"energy per unit time"
- Average Power: $\left.\boldsymbol{P}_{g}=\left.\langle | g(t)\right|^{2}\right\rangle=\lim _{T \rightarrow \infty} \frac{1}{-\overline{2 T}} \int_{-\underline{T}}^{T}|g(t)|^{2} d t$
- A signal $g(t)$ is a power signal if $0<P_{g}<\infty$.
- Any power signal $g(t)$ has $E_{g}=\infty$.
- For periodic signal:

$$
P_{g}=\frac{1}{T_{0}} \int_{T_{0}}|g(t)|^{2} d t=\frac{\text { energy in one period }}{\text { period }}
$$

Time Average:
$\langle\boldsymbol{g}(\boldsymbol{t})\rangle=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} g(t) d t$
For periodic signal:
$\langle g(t)\rangle=\frac{1}{T_{0}} \int_{T_{0}} g(t) d t$

$g(t)$	$\left.P_{g}=\left.\langle \| g(t)\right\|^{2}\right\rangle$
$\sum_{k} c_{k} e^{j 2 \pi f_{\mathrm{k}} t}$	$\sum_{k}\left\|c_{k}\right\|^{2}$
where the f_{k} are distinct	$\frac{1}{2} \sum_{k}\left\|A_{k}\right\|^{2}$
$\sum_{\substack{ \\ \text { where the } f_{k} \\ \text { ware positive and distinct }}} A_{k} \cos \left(2 \pi f_{k} t+\phi_{k}\right)$	

Power Calculation

$g(t)$	$\left.P_{g}=\left.\langle \| g(t)\right\|^{2}\right\rangle$
Periodic with period T_{0}	$\frac{1}{T_{0}} \int_{T_{0}}\|g(t)\|^{2} d t$
$\sum_{k} a_{k}(t)$	$\sum_{k} P_{a_{k}}$
where the $a_{k}(t)$ are orthogonal (e.g., do not overlap in the frequency domain)	

Time average vs. Inner Product

Inner Product:

$$
\langle x(t), y(t)\rangle=\int_{\substack{ \\\text { two arguments }}}^{\infty} x(t) y^{*}(t) d t
$$

Time Average:

$$
\begin{aligned}
& \langle g(t)\rangle=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2} g(t) d t=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} g(t) d t . \\
& \text { one argument }
\end{aligned}
$$

Ex. $\left\langle\left(\begin{array}{c}-15\end{array}\right),\binom{(3)}{(3)}\right\rangle=(-1)(3)^{* *}+(3)(1)^{*}=-3+3=0$ Inner Product (Cross Correlation) vectors

- Vectors

Complex conjugate

$$
\langle\bar{x}, \vec{y}\rangle=\bar{x} \cdot \vec{y}^{*}=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \cdot\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)^{*}=\sum_{k=1}^{n} x_{k} y_{k}^{*}
$$

- Waveforms:Time-Domain
${ }^{[D e f f .4 .15 b]}\langle x(t), y(t)\rangle=\int_{-\infty}^{\infty} x(t) y^{*}(t) d t$
- Waveforms: Frequency Domain

When the vectors are real-valued, the operation is the same as dot product that you have seen in high school.

By Parseval's Theorem [2.43], these two calculations will give the same answer.

$$
\langle X(f), Y(f)\rangle=\int_{-\infty}^{\infty} X(f) Y^{*}(f) d f
$$

Inner Product (Cross Correlation)

- Vectors

$$
\langle\vec{x}, \vec{y}\rangle=\bar{x} \cdot \vec{y}^{*}=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \cdot\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)^{*}=\sum_{k=1}^{n} x_{k} y_{k}^{*}
$$

Complex conjugate

When the vectors are
real-valued, the
operation is the same as dot product that you have seen in high school.

Example:

$$
\left\langle\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right),\left(\begin{array}{c}
-1 \\
0 \\
-1
\end{array}\right)\right|=(1)(-1)+(2)(0)+(-1)(-1)=0
$$

Orthogonality

- Two signals are said to be orthogonal if their inner product is zero.
- The symbol \perp is used to denote orthogonality.

Vector:
$\langle\vec{a}, \vec{b}\rangle=\vec{a} \cdot \vec{b}^{*}=\left(\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right) \cdot\left(\begin{array}{c}b_{1} \\ \vdots \\ b_{n}\end{array}\right)^{*}=\sum_{k=1}^{n} a_{k} b_{k}^{*}=0$

$$
\left\langle\langle, b\rangle=\int_{-\infty}^{\infty} a(t) b^{*}(t) d t=0\right.
$$

Frequency domain:

$$
\langle A, B\rangle=\int_{-\infty}^{\infty} A(f) B^{*}(f) d f=0
$$

Example (Fourier Series):

$$
\begin{aligned}
& \sin \left(2 \pi k_{1} \frac{t}{T}\right) \text { and } \cos \left(2 \pi k_{2} \frac{t}{T}\right) \text { on }[0, T] \\
& e^{j 2 \pi n \frac{t}{T}} \text { on }[0, T]
\end{aligned}
$$

Important Properties

- Parseval's theorem

$$
\langle x, y\rangle \equiv \int_{-\infty}^{\infty} x(t) y^{*}(t) d t=\int_{-\infty}^{\infty} X(f) Y^{*}(f) d f \equiv\langle X, Y\rangle
$$

(2) TDMA $\stackrel{\uparrow}{\text { rime }}$

It is therefore sufficient to check only on the "convenient" domain.

$$
x(t) \perp y(t) \quad \text { iff } \quad X(f) \perp Y(f) .
$$

code

- Useful observation: If the non-zero regions of two signals
- do not overlap in time domain or $Y(f) \circ$ do not overlap in frequency domain,
 then the two signals are orthogonal (their inner product $=0$).
- However, in general, orthogonal signals may overlap both in time and in frequency domain.

Orthogonality: Example 1

The two waveforms above overlaps both in time domain and in frequency domian.

Orthogonality: Example 2

An example of four "mutually orthogonal" signals.

When $i \neq j$,

$$
\left\langle c_{i}(t), c_{j}(t)\right\rangle=0
$$

Power Calculation

$$
\begin{gathered}
\text { orthogonal summands } \\
\qquad P_{\Sigma} \stackrel{ }{=} \Sigma P
\end{gathered}
$$

Special Cases: A Revisit

$g(t)$	$\left.P_{g}=\left.\langle \| g(t)\right\|^{2}\right\rangle$
$\sum_{k} c_{k} e^{j 2 \pi f_{\mathrm{k}} t}$	$\sum_{k}\left\|c_{k}\right\|^{2}$
where the f_{k} are distinct	$\frac{1}{2} \sum_{k}\left\|A_{k}\right\|^{2}$
$\sum_{\substack{k \\ \text { where the } f_{k} \\ \text { are positive and distinct }}} A_{k} \cos \left(2 \pi f_{k} t+\phi_{k}\right)$	

> The requirement that "the f_{k} are distinct" is there to guarantee that summands do not overlap in the frequency domain. This makes them orthogonal.

Power Calculation

$g(t)$	$\left.P_{g}=\left.\langle \| g(t)\right\|^{2}\right\rangle$
Periodic with period T_{0}	$\frac{1}{T_{0}} \int_{T_{0}}\|g(t)\|^{2} d t$
$\sum_{k} a_{k}(t)$ where the $a_{k}(t)$ are orthogonal (e.g., do not overlap in the frequency domain)	$\sum_{k} P_{a_{k}}$

