Principles of Communications EES 351

Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th 4.2 Energy and Power

Review: Energy and Power

• Consider a signal g(t).

• Total (normalized) **energy**: Parseval's Theorem [2.43]
(n. 4.13)
$$E_g = \int_{-\infty}^{\infty} |g(t)|^2 dt = \lim_{T \to \infty} \int_{-T}^{T} |g(t)|^2 dt = \int_{-\infty}^{\infty} |G(f)|^2 df.$$

• Average (normalized) **power**: [Defn. 4.15] $\left(\frac{P_g}{\left|g\left(t\right)\right|^2}\right) = \lim_{T \to \infty} \frac{1}{T} \int_{T/2}^{T/2} \left|g\left(t\right)\right|^2 dt = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \left|g(t)\right|^2 dt.$ time-average operator [Defn. 4.16a]

Review: Time average vs. Inner Product

Inner Product:

$$\left\langle x(t), y(t) \right\rangle = \int_{-\infty}^{\infty} x(t) y^{*}(t) dt$$

two arguments
Time Average:

$$\left\langle g(t) \right\rangle = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} g(t) dt = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} g(t) dt.$$
one argument

Summary (1)

- (Total) Energy: $E_g = \int_{-\infty}^{\infty} |g(t)|^2 dt = \int_{-\infty}^{\infty} |G(f)|^2 df$
- Average Power: $P_g = \langle |g(t)|^2 \rangle = \lim_{T \to \infty} \left[\frac{1}{2T} \int_{-T}^{T} |g(t)|^2 dt \right]$ "energy per unit time"

- For periodic signal: $P_g = \frac{1}{T_0} \int_{T_0} |g(t)|^2 dt = \frac{\text{energy in one period}}{\text{period}}$
- Other special cases:

 $\overline{g}(t)$ $\overline{P_g} = \langle |g(t)|^2 \rangle$ $\sum c_k e^{j2\pi f_k t}$ $\sum |c_k|^2$ Linear combination of complex exponential functions where the f_{k} are distinct [4.23] $\frac{1}{2}\sum |A_k|^2$ $\sum A_k \cos(2\pi f_k t + \phi_k)$ Linear combination of sinusoids [4.28]where the f_{h} are positive and distinct

- Time Average: $\langle \boldsymbol{g}(\boldsymbol{t}) \rangle = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} g(t) dt$
 - For periodic signal: $\langle g(t) \rangle = \frac{1}{T_{c}} \int_{T_{c}} g(t) dt$

Summary (2)

- (Total) Energy: $E_q = \int_{-\infty}^{\infty} |g(t)|^2 dt = \int_{-\infty}^{\infty} |G(f)|^2 df$
 - A signal g(t) is an **energy signal** if $0 < E_q < \infty$.
- Average Power: $P_g = \langle |g(t)|^2 \rangle = \lim_{T \to \infty} \left(\frac{1}{2T} \int_{-T}^{T} |g(t)|^2 dt \right)$ A signal g(t) is a power signal if 0 < T
 - - Any power signal g(t) has $E_q = \infty$.
 - For periodic signal:
 - $P_g = \frac{1}{T_0} \int_{T_0} |g(t)|^2 dt = \frac{\text{energy in one period}}{\text{period}}$
 - Other special cases:

g(t)

Summary (3)

(Total) Energy: $E_q = \int_{-\infty}^{\infty} |g(t)|^2 dt = \int_{-\infty}^{\infty} |G(f)|^2 df$

- A signal g(t) is an **energy signal** if $0 < E_g < \infty$.
- Average Power: $P_g = \langle |g(t)|^2 \rangle = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |g(t)|^2 dt$ "energy per unit time"
 - A signal g(t) is a **power signal** if $0 < P_q < \infty$.

• Any power signal
$$g(t)$$
 has $E_g = \infty$.

- For periodic signal: $P_g = \frac{1}{T_0} \int_{T_0} |g(t)|^2 dt = \frac{\text{energy in one period}}{\text{period}}$
- Other special cases:

Time Average:

For periodic signal:

 $\langle g(t) \rangle = \frac{1}{T_0} \int_{T_0}^{t} g(t) dt$

 $\langle \boldsymbol{g}(\boldsymbol{t}) \rangle = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} g(t) dt$

Power Calculation

Time average vs. Inner Product

Inner Product:

$$\left\langle x(t), y(t) \right\rangle = \int_{-\infty}^{\infty} x(t) y^{*}(t) dt$$

two arguments
Time Average:
$$\left\langle g(t) \right\rangle = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} g(t) dt = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} g(t) dt.$$

one argument

Ex.
$$\langle \overrightarrow{y}, \overrightarrow{y} \rangle = (-1)(3)^{n} + (3)(1)^{n} = -3+3 = 0$$

Inner Product (Cross Correlation)
• Vectors
 $\langle \vec{x}, \vec{y} \rangle = \vec{x} \cdot \vec{y}^{*} = \begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix} \cdot \begin{pmatrix} y_{1} \\ \vdots \\ y_{n} \end{pmatrix}^{*} = \sum_{k=1}^{n} x_{k} y_{k}^{*}$ When the vectors are real-valued, the operation is the same as dot product that you have seen in high school.
[Defn. 4.15b] $\langle x(t), y(t) \rangle = \int_{-\infty}^{\infty} x(t) y^{*}(t) dt$
• Waveforms: Frequency Domain $\langle X(f), Y(f) \rangle = \int_{-\infty}^{\infty} X(f) Y^{*}(f) df$

Inner Product (Cross Correlation)

- Complex conjugate

• Vectors

$$\langle \vec{x}, \vec{y} \rangle = \vec{x} \cdot \vec{y}^* = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}^* = \sum_{k=1}^n x_k y_k^*$$

When the vectors are real-valued, the operation is the same as dot product that you have seen in high school.

Example:

$$\left| \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ -1 \end{pmatrix} \right| = (1)(-1) + (2)(0) + (-1)(-1) = 0$$

Orthogonality

- Two signals are said to be **orthogonal** if their **inner** product is zero.
- The symbol \perp is used to denote orthogonality.

Vector:

Vector:

$$\left\langle \vec{a}, \vec{b} \right\rangle = \vec{a} \cdot \vec{b}^* = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \cdot \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}^* = \sum_{k=1}^n a_k b_k^* = 0$$
Example:

$$2t + 3 \text{ and } 5t^2 + t - \frac{17}{9} \text{ on } [-1,1]$$
Example:

$$2t + 3 \text{ and } 5t^2 + t - \frac{17}{9} \text{ on } [-1,1]$$
Example:

$$2t + 3 \text{ and } 5t^2 + t - \frac{17}{9} \text{ on } [-1,1]$$

Example:

Time-domain:

$$\langle a,b\rangle = \int_{-\infty}^{\infty} a(t)b^*(t)dt = 0$$

Frequency domain:

$$\langle A,B\rangle = \int_{-\infty}^{\infty} A(f)B^*(f)df = 0$$

$$a_{k}b_{k}^{*} = 0$$

$$a_{k}b_$$

 \mathbf{a}

The two waveforms above overlaps both in time domain and in frequency domian.

Orthogonality: Example 2

An example of four "mutually orthogonal" signals.

When $i \neq j$,

$$\left\langle c_i(t), c_j(t) \right\rangle = 0$$

Power Calculation

Special Cases: A Revisit

The requirement that "the f_k are distinct" is there to guarantee that summands do not overlap in the frequency domain. This makes them orthogonal.

Power Calculation

